The period function for quadratic integrable systems with cubic orbits

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The period function for second-order quadratic ODEs is monotone∗

Very little is known about the period function for large families of centers. In one of the pioneering works on this problem, Chicone [?] conjectured that all the centers encountered in the family of second-order differential equations ẍ = V (x, ẋ), being V a quadratic polynomial, should have a monotone period function. Chicone solved some of the cases but some others remain still unsolved. In ...

متن کامل

2-Banach stability results for the radical cubic functional equation related to quadratic mapping

The aim of this paper is to introduce and solve the generalized radical cubic functional equation related to quadratic functional equation$$fleft(sqrt[3]{ax^{3}+by^{3}}right)+fleft(sqrt[3]{ax^{3}-by^{3}}right)=2a^{2}f(x)+2b^{2}f(y),;; x,yinmathbb{R},$$for a mapping $f$ from $mathbb{R}$ into a vector space. We also investigate some stability and hyperstability results for...

متن کامل

Periodic orbits contribution to the 2 - point correlation form factor for pseudo - integrable systems

The 2-point correlation form factor, K 2 (τ), for small values of τ is computed analytically for typical examples of pseudo-integrable systems. This is done by explicit calculation of periodic orbit contributions in the diagonal approximation. The following cases are considered: (i) plane billiards in the form of right triangles with one angle π/n and (ii) rectangular billiards with the Aharono...

متن کامل

Multibump Orbits Continued from the Anti-integrable Limit for Lagrangian Systems

A continuous-time anti-integrable limit is considered in the context of time-dependent Lagrangian systems on the torus. The anti-integrable limit is the singular (or adiabatic) limit in the singularly (adiabatically, resp.) perturbed problems. This paper presents an implicit function theorem version of the results of Bolotin and MacKay (1997 Nonlinearity 1

متن کامل

Binary Codes and Period-$2$ Orbits of Sequential Dynamical Systems

Let [Kn, f, π] be the (global) SDS map of a sequential dynamical system (SDS) defined over the complete graph Kn using the update order π ∈ Sn in which all vertex functions are equal to the same function f : F2 → F2 . Let ηn denote the maximum number of periodic orbits of period 2 that an SDS map of the form [Kn, f, π] can have. We show that ηn is equal to the maximum number of codewords in a b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2005

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2004.07.022